If it's not what You are looking for type in the equation solver your own equation and let us solve it.
v^2=42
We move all terms to the left:
v^2-(42)=0
a = 1; b = 0; c = -42;
Δ = b2-4ac
Δ = 02-4·1·(-42)
Δ = 168
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{168}=\sqrt{4*42}=\sqrt{4}*\sqrt{42}=2\sqrt{42}$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{42}}{2*1}=\frac{0-2\sqrt{42}}{2} =-\frac{2\sqrt{42}}{2} =-\sqrt{42} $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{42}}{2*1}=\frac{0+2\sqrt{42}}{2} =\frac{2\sqrt{42}}{2} =\sqrt{42} $
| -7b+5=-30 | | 20=0.5x+4 | | 2-x=52 | | -6x^2-30x^2+42x=0 | | -6x2-30x^2+42x=0 | | 8(x-4)=2(11+4x) | | -6x(x^2+5x-7)=0 | | 8(4x+3)=0 | | -9=a/6-7 | | 5-2p=-21 | | (4x+9)/(x+2)=0 | | 2/5x+7-3/5x=12 | | -7-8p=97 | | 54/r=24 | | 5q/3=24 | | q=24/5 | | -2x+10+7x=5(x+4) | | 93-4t-7=180 | | 93+4t-7=180 | | -2(3x)=12 | | 2h=4+5 | | 5+2r=2r+5 | | -2f+8=8-2f | | 2d+3d=5d | | -5u=4u-9u | | B-5u=4u-9u | | 14.000+160x=2400-200x | | 5.853x=65 | | (2x+3)(x)=160 | | 17/8x+30=0 | | 5^(x+3)=125 | | x=(0.709-0.0155)/0.283 |